Search results

Search for "ultrathin nanosheets" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • , Cl), Br (I). Dong et al. [88] reported the fabrication of boron-doped Bi3O4Cl ultrathin nanosheets via a solvothermal technique, which were found to have enhanced solar absorption and efficient electron–hole separation. The B atoms enhance the photocatalytic performance via (1) producing mid-gap
PDF
Album
Review
Published 11 Nov 2022

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  •  2a. Supporting Information File 1, Figure S3c,d, also shows ultrathin nanosheets of MoO3 suggesting a successful exfoliation. The selected-area electron diffraction (SAED) pattern shown in the inset of Figure 2a indicates that the MoO3 nanosheets are crystalline after exfoliation. Crystallinity and
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • . [36] reported ZnO-embedded BiOI hybrid nanoflakes fabricated by using Zn5(CO3)2(OH)6 ultrathin nanosheets for BiOI deposition followed by calcination. The obtained ZnO-embedded BiOI hybrid nanoflakes show good photocatalytic activity and recyclability. Jiang et al. [37] prepared the BiOI/ZnO
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Optical contrast and refractive index of natural van der Waals heterostructure nanosheets of franckeite

  • Patricia Gant,
  • Foad Ghasemi,
  • David Maeso,
  • Carmen Munuera,
  • Elena López-Elvira,
  • Riccardo Frisenda,
  • David Pérez De Lara,
  • Gabino Rubio-Bollinger,
  • Mar Garcia-Hernandez and
  • Andres Castellanos-Gomez

Beilstein J. Nanotechnol. 2017, 8, 2357–2362, doi:10.3762/bjnano.8.235

Graphical Abstract
  • material is isolated one of the most urgent things is to establish a correlation between the thicknesses of the exfoliated flakes and their optical contrast (in order to be used as a calibration guide to identify ultrathin flakes optically) and to determine the optimal substrates to identify ultrathin
  • nanosheets by optical microscopy. Franckeite is one of the latest novel layered materials added to the 2D materials family and up to now very little is known about this material [15][16][17][18]. One of the special characteristics that triggered the interest of the community on franckeite is the fact that it
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2017

Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed

  • Hongxia Wang,
  • Meinan Liu,
  • Cheng Yan and
  • John Bell

Beilstein J. Nanotechnol. 2012, 3, 378–387, doi:10.3762/bjnano.3.44

Graphical Abstract
  • consisting of ultrathin nanosheets with 100% of the [001] facet exposed was employed to fabricate dye-sensitized solar cells (DSCs). Investigation of the electron transport and back reaction of the DSCs by electrochemical impedance spectroscopy showed that the spheres had a threefold lower electron
  • ; ultrathin nanosheets; Introduction In the past two decades, dye-sensitized solar cells (DSCs) have received substantial attention from both academic and industrial communities as one of the most promising low-cost, high-efficiency third-generation photovoltaic devices [1][2]. A typical DSC consists of a
  • structure consisting of ultrathin nanosheets with 100% of the [001] facet exposed were synthesized and applied in dye-sensitized solar cells (DSCs). The photovoltaic performance of the DSCs with different concentrations of the hierarchically structured TiO2 spheres was evaluated. The kinetics of electron
PDF
Album
Full Research Paper
Published 07 May 2012
Other Beilstein-Institut Open Science Activities